o

Phage

SECURITY

Before-audit checklist

1. Have complete code (skip if you are interested only in the security part)

2. Writing tests
- How much coverage is enough?
- Unit tests vs integration tests?

3. Internal reviews
- Code reviews before audit, is it worth it?
- How and what to do

4. Clear documentation
- What should/shouldn't it have?

5. Scope definition
- What should be in scope?

6. Choose the right audit firm
- How to pick the right guys, the first time

Have complete code

Before you consider any sort of security, you must first have a MVP/POC. That
means an actual piece of code that should be working on its own. All user
paths from first interaction (deposit, stake, lock, etc.) to last (withdraw,
redeem...) should be working with the intended variable inputs without

reverting or leading to any errors.

If you have any integrations, make sure you follow their best practices
(thoroughly read their docs, or at least make Claude read them and correct
any code that goes against them). If you are unsure about some functions,
most (if not all) projects have supportive developers that you can reach out
to and who would be happy to look at your code and help with anything you

are missing.

If you are doing heavy integrations, | would even suggest reaching out to
them, as they know their code best and have seen many projects integrate
beforehand and know what works and what doesn't.

Writing tests

The most dreaded part.

Most people would look at what coverage you have to determine your test
suite. However, coverage is an inaccurate stat. It simply determines if your
tests go through a given path, skipping the fact that you might have tested it
wrongly, or with the best possible conditions.

The amount of tests you want to write depends on how fast you want to
launch (you can write tests during an audit, although | suggest having
everything beforehand).

If you are in a rush, you would need the most basic tests:

1. Simple function tests without malicious intent (i.e., just regular user
interactions) -> deposit, claim, withdraw

2. Simple user paths without malicious intent -> "deposit -> withdraw™ and
‘stake -> claim -> withdraw®

3. Access control -> if users can call ‘'onlyOwner” functions or if users can
‘withdraw™ from other user accounts

4. Simple protocol integrations -> mock calls for the protocol you are

integrating and distribute yield, then try claiming it

However, if you have a spare day or two, you should consider testing more
thoroughly (all of the above and):
1. Users with malicious intent calling functions/flows -> try simulating first
depositor bug if you are using 4626 or deposit/withdraw 1 wei
2. Advanced function flows -> "user] deposit -> user2 withdraw -> userl
claim’
3. Integration tests to see if your integrations actually work

These tests shouldn't take long to write.

You should be spending the bulk of your time on the actual project.

Notice that | said "making” as for tests you don't need to write them on your
own. You can (and | suggest you) use Al. | prefer Cursor. The way to make it

write the correct tests the right way is simple:

1. Make it create a testing diagram for every function and user flow (make
sure it's correct)

2. Prompt it to make a complete setup (initialize and configure every
contract) with a few user accounts

3. Start writing tests one by one

4. Correct it where necessary

You won't write them yourself, but you'll be supervising their creation. This
would speed it up by 2-3 times.

Internal reviews

You've written a lot of tests, but often they miss unique paths and "strange”

conditions.

This is why you should audit your own contracts. Paying your developers (or
doing it yourself) would cost you 2-3 days of "no progress” on your code.
However, that can save you an extra audit.

What would you rather do
a) pay your devs to work a few more days ($300-500)
b) get an extra audit ($12k+)?

This often makes the difference between needing 1 or 2 audits

Before you start, | would recommend setting a time window that would force
you to do about ~400 nSLOC per day (i.e.,, 1000 nSLOC -> 2-3 days). Since this
is your own code and you know it well, you won't need extra time to

understand it.

During that time, your only goal is to break everything you can. Don't write new
code and don't re-edit old code, but just go around and try to exploit your

own project.

Make GitHub issues with the vulnerabilities (or note them somewhere) and
continue breaking your code. After the time is up, start fixing them as best as

you can.

After you are done, make sure all of the tests run.

Clear documentation

This should not be complex. Don't overengineer it. No one needs GitBooks for
every smart contract with every function and every variable and what they
do. If they want that, they can open your GitHub and read the contracts (or

interfaces) and get the info they need.

Your docs should be simple to understand, concise, and to the point. Again,
use Claude to write them. It takes only a few minutes (with a good prompt),
maybe an hour if you want them polished. Also, if you happen to have
diagrams and schemes, feel free to show them in the docs. They provide a

good visual reference.

Make sure you have some minimal nat-spec. You don't need to explain every
single line, but have 1 or 2 sentences above functions that give a brief
explanation why they are needed. Again Cursor can do that for you.

Scope definition

The simplest part. Get only logic contracts in scope. That means any
contracts that are interfaces can be removed from the scope to reduce the
nSLOC (and possibly the price). Finding bugs in interfaces is rare, and most
are due to wrong interface implementation, which is implemented in the logic

(i.e., already covered by the scope).

If that's your 2nd or 3rd audit, you can exclude simple helper functions (or
implement OZ/Solady ones) from the scope. Auditors will still look at
out-of-scope contracts that integrate with in-scope ones and try to find bugs
there. However, note that if the helper functions are too complex, they may

also need to be included in scope, just in case.

Choose the right audit firm

Choosing the right firm is not easy. You must consider:

- what your users think (most don't know which ones are good)

- what your VCs think or push you to choose (they still don't know which ones
are good, but rely on their brand, which is very dongerous)

- what you and your developers think (these guys you can trust the most).

My first suggestion would be to not let yourself be pushed around by VCs
telling you which firm you should pick. Resist them as much as you can and
provide logical feedback on which ones you think are better and why. But how
do you know which ones are better and why?

To know that you must first find a number of auditing firms and research
them. Here is what you should be looking for:

1. The firm doesn’t do the audit, the auditors do
Brands are a big thing. But in cybersecurity, the brand is 80% client
communication and 20% delivering on results.

On top of that, most firms work with contractors, some have employees, but
I've seen employees of big firms take things “on the side.” So consider that
most firms have access to the same pool of auditors, where the same team
of 3 can be one price at firmX and 2x more expensive at firmY for the exact
same guys.

2. Some auditors are better than others, and some are specialized
Most (if not all) auditors have a GitHub portfolio/CV with their past experience.
You will need it to determine how good they are. Look for contest wins, for
which firms they have worked with or overall quantity of audits.

Some auditors are mediocre in general but are highly specialized in X niche
(lending, bridges, Hyperliquid, or any interesting topic). It's generally good to
have one of these as they would most certainly catch the rare bugs (missed
by most).

3. Some auditors are booked on 2 projects at the same time, reducing
their quality of work

When making deals, make sure to ask if all of the guys would be doing only
this audit during the whole timeframe. Again, most big firms usually send a
team of 2 juniors or intermediates for the whole audit and 1 lead auditor just
to check at the end if they have missed anything.

Steps to take before you choose an auditing firm:

- Get a quote from a few firms

- Ask each about the team they plan on putting and their CVs
- Ask for people familiar with the project type you are building
- Look at each team and consider the price

Short summary of next steps:

1. Make sure your code is finished

2. Spend a few days with Claude writing tests
3. Do an internal review

4. Write short and clear docs

5. Scope your project

6. Research a few auditing firms

Want to get audited by professionals?
Book your audit and submit your repo now.
(takes only 3min)

https://www.phagesecurity.com/request-audit

	Before-audit checklist
	Writing tests
	Internal reviews
	Clear documentation
	Scope definition
	
	Choose the right audit firm
	Short summary of next steps:

