Phage

SECURITY

Foresight
< Security Overhaul >

Conducted by:

Pyro, Security Researcher
Deth, Security Researcher
YanecaB, Junior Security Researcher

15.08.2025



https://github.com/0x3b33
https://github.com/0xdeth
https://github.com/YanecaB

2,

&7
. ,‘)‘éj'%

Foresight Phage Security @ 7

Table of Contents

Disclaimer 3
System overview 3
Executive summary 3
OVEIVIEW . . . . o 3
Timeline . . . . . o e 3
SCOPE . . . o 4
ISSUesS FOUNd . . . . . L 4
Findings 5
High Severity . . . . . . . . 5
[H-01] ammMint messes up all collateral backing . . . . . .. ... ... ... ..... 5
[H-02] Any user can drain the referral contract . . . . . .. .. ... ... ... .... 6
[H-03] Unauthorized redemption in redeemPositionForUser . ... ........ 7
Medium Severity . . . . . . . 8
[M-01] Mixed buy/sell trades can brickthe market . . . . . ... .. ... .. ..... 8
Low Severity . . . . . 10
[L-01] Donation not applied when minting ERC1155 positions . . . . . . . . ... ... 10
[L-02] Using regular approve will break the contracts if USDT is used as collateral . 12




&
, s 4
Foresight Phage Security & 7

Disclaimer

This report represents a high-level security review, not a comprehensive audit. Due to time
constraints unsuitable for conducting a proper security audit, the review was limited in
scope and depth. Security researchers employed manual review techniques to identify basic
vulnerabilities and provide recommendations to improve the overall security posture of the
smart contracts.

This time-constrained security review cannot guarantee the absence of vulnerabilities and
should not be considered equivalent to a full security audit. While efforts were made to
identify fundamental security issues and enhance the project’s security baseline, the limited
timeframe may have prevented the discovery of more complex or subtle vulnerabilities that
would typically be uncovered in a comprehensive audit process.

System overview

Foresight is a prediction market built on Katana, utilizing AUSD as collateral for trading
conditional tokens representing different event outcomes. The system employs LMSR
(Logarithmic Market Scoring Rule) automated market maker to provide liquidity and dynamic
pricing, while the ConditionalTokens contract manages ERCI155-based outcome positions that
can be minted, traded, and redeemed upon condition resolution.

Executive summary

Overview
Project Name Foresight
Repository Foresight
Commit hash O1le672b709198dd14e39eb7eac81284c1557ad0
Remediation 735132354600c2b236ba9a7879cecbelfbbfa864
Methods Manual review

Timeline
Audit kick-off 05.08.2025
End of audit 09.08.2025
Remediations start 12.08.2025
Remediations end 15.08.2025




4
.  F
Foresight Phage Security & 7

Scope

src/ImsrMarket/MarketMaker.sol
src/ImsrMarket/LSLMSRMarketMaker.sol

src/ImsrMarket/LSLMSRMarketMakerFactory.sol

Issues Found

Severity Count
High 3
Medium 2

Low 2




&
Foresight Phage Security & 7

Findings
High Severity
[H-01] ammMint messes up all collateral backing

The original Gnosis CTF contract uses splitPosition for creating new positions, where it would
mint all outcomes. This will maintain our collateral proportion. For example, if we pay 100 USDC,
it would mint us 100 YES and 100 NO tokens. Later in the call, if the user wants only YES, we can
sell the NO and get back some more YES.

Our contracts operate differently. trade only mints the desired tokens and ignores the rest:

s ~\

if (outcomeTokenNetCost > 0) {

collateralToken.safeTransferFrom(msg.sender, address(this),
uint256(netCost));

require(collateralToken.approve(address(pmSystem), uint256(
outcomeTokenNetCost)));

uint256[ ] memory amounts = new uint256[ ](atomicOutcomeSlotCount);

for (uint256 1 = 0; 1 < atomicOutcomeSlotCount; i++) {
// [YES = 50e6, NO = 0]
amounts[i] = uint256(outcomeTokenAmounts[i]);

t

pmSystem.ammMint(collateralToken, uint256(outcomeTokenNetCost),
address(this), positionIds, amounts);

// splitPositionThroughAllConditions(uint(outcomeTokenNetCost));

\ J

The impact is best seen with the example below:

-

Initial state after funding:

1. Market receives: 1000 USDT collateral

- splitPositionThroughAllConditions(1000) creates:
- 1000 YES tokens
- 1000 NO tokens

Q total = 2000, b = (alpha * 2000) / 1e18

2. User buys 500 more YES tokens:

- ammMint() creates: 500 YES tokens (ONLY)
- 1500 YES tokens
- 1000 NO tokens

\ J

Now when we calculate Q_total and b and check our collateral backing, we get a different ratio
from before:

Q_total = 1500 YES + 1000 NO = 2500
b = (alpha = 2500) / 1e18
Collateral backing = 1000 + 500 = 1500 USDT




V4
. S 4
Foresight Phage Security & 4

The math will assume 2500 USDT in backing, which would mess up internal accounting, lead
to constantly changing prices and potential for MEV.

Recommendation

Given the current design, the best suggestion would be to implement the old Gnosis CTF
functions and mint on both sides.

[H-02] Any user can drain the referral contract

Anyone can register a referral code and can set marketAddress to their smart contract address:

s “

function registerReferralCode(address user, bytes32 conditionId,
uint256 outcomeIndex, address marketAddress)
public
returns (string memory referralCode)

// keccak256(abi.encodePacked(user, conditionId, outcomeIndex));
referralCode = generateReferralCode(user, conditionId, outcomeIndex);
// Check if this referral code already exists
require(referralCodes[referralCode].user = address(0),
"Referral code already exists");
// Register the referral code
referralCodes[referralCode] = ReferralCode({
user: user,
conditionId: conditionId,
outcomeIndex: outcomeIndex,
marketAddress: marketAddress
});
emit ReferralCodeGenerated(user, referralCode, conditionId,
outcomeIndex);
return referralCode;

This will make processReferral pass without an issue if called by their contract as
their contract will be the marketAddress = refCode.marketAddress and also the msg.sender -
msg.sender = marketAddress.




N %4

&
Foresight Phage Security & "5‘

function processReferral(address referee, string memory referralCode,

uint256 earnings, address marketAddress)
external

ReferralCode memory refCode = referralCodes[referralCode];
require(refCode.user #* address(@), "Invalid referral code");
require(refCode.user s referee, "Cannot refer yourself");
require(earnings > @, "Earnings must be greater than zero");
require(marketAddress = refCode.marketAddress, "Market address
mismatch");
// Only allow calls from the associated market maker
require(msg.sender = marketAddress, "Only market maker can call");

. J

Then the function will continue to _convertUSDToShares where we would grant them approval
and call trade, which in turn can be just a transferfFrom from the referral contract to our
malicious contract.

s a

require(collateralToken.approve(address(market), costUint),
"Failed to approve market for collateral");

// Execute the trade with fee-free parameters

int256 actualCost = market.trade(
outcomeTokenAmounts,
int256(costUint), // collaterallLimit - use exact calculated cost
""" // empty referralCode to avoid recursion
true // isReferralContract = true for fee-free trade

)

. J

This would allow anyone to drain the referral system.

The POC for this is in test/PhageSecurity/PhageSecurity.t.sol - test_02_ReferralSystemExploit

Recommendation

Whitelist specific market addresses in order to make sure only real markets can be used.
Also consider adding access control so that regular users cannot refer to another address
controlled by them steal part of the fees.

[H-03] Unauthorized redemption in redeemPositionForUser

The ConditionalTokens:: redeemPositionsForUser function lacks access control, allowing anyone
to redeem positions on behalf of any user.

| as a malicious user can exploit this by redeeming another user’'s positions without consent.
And setting donationPercentages to 100% and redirecting the full payout to myself. => This
effectively allows front-running or griefing attacks where users lose their collateral.




&
Foresight Phage Security & 7

Recommendation

Implement access control for redeemPositionsForUser, €.g. an approval mechanism, similar to
how ERC-20/721 approvals work.

s N

// Mapping of user => operator => approved
mapping(address => mapping(address => bool)) private redemptionApprovals;

/// anotice Approves or revokes a third-party to redeem positions on your behalf
function setRedemptionApproval(address operator, bool approved) external {
redemptionApprovals[msg.sender][operator] = approved;

}

/// @notice Returns whether an operator is approved to redeem for a user
function isRedemptionApproved(address account, address operator) public view
returns (bool) {
return redemptionApprovals[account][operator];

}

\ J

And update the start of the redeemPositionsForUser to be like:

-

require(
account = msg.sender || isRedemptionApproved(account, msg.sender),
"Not authorized to redeem for this user"

);

\

If you want you can also implement donation restriction, so that the approver does not donate
100% of the tokens to himself.

Medium Severity
[M-01] Mixed buy/sell trades can brick the market

When trading, a user can specify if they want to buy/sell any atomic position they want. This
is fed to calcNetCost, which tells if after they buy/sell their chosen outcome tokens, they have
to pay or receive collateral.

If the user is just buying or just selling, it's trivial as they always have to pay/receive, but if they
buy and sell in the same transaction, then things get more complicated.

Let's examine where the outcomeTokenNetCost is handled (if user pays/receives):




&
Gy, i

Foresight Phage Security @ -

3

// Pays
// Handle collateral transfer and position splitting for buys
if(outcomeTokenNetCost > @) {
collateralToken.safeTransferFrom(msg.sender, address(this), uint(
netCost));
require(collateralToken.approve(address(pmSystem), uint(
outcomeTokenNetCost)));
// mint shares based on token amount
uint[] memory amounts = new uint[](atomicOutcomeSlotCount);
for (uint 1 = 0; 1 < atomicOutcomeSlotCount; i++) {

amounts[i] = uint(outcomeTokenAmounts[i]);

}

pmSystem.ammMint(collateralToken, uint(outcomeTokenNetCost),
address(this), positionIds, amounts);

// splitPositionThroughAllConditions(uint(outcomeTokenNetCost));

}

// Receives
if(outcomeTokenNetCost < @) {
uint[] memory amounts = new uint[J](atomicOutcomeSlotCount);
for (uint 1 = @; i < atomicOutcomeSlotCount; i++) {
amounts[i] = uint(-outcomeTokenAmounts[i]);

}

pmSystem.ammBurn(collateralToken, uint(-netCost) + tradingFeeAmount ,
positionIds, amounts);
// mergePositionsThroughAllConditions(uint(-outcomeTokenNetCost));

}

\ J

Notice the loop. We'll examine the paying route, as it's hit first:

for (uint 1 = Q; 1 < atomicOutcomeSlotCount; 1++) {
amounts[i] = uint(outcomeTokenAmounts[i]);

}

The code always casts outcomeTokenAmounts[i] to uint, which is fine if the user is only buying,
thus outcomeTokenAmounts > @, but if they are selling then it's < 0. Casting a negative integer to
uint causes the value to underflow into a giant uint.

Example, where we try to sell 50e6 of index@ and buy 75e6 of index1:

outcomeTokenAmounts: 11579208923731619542357098500868790785326998466564056403
9457584007913079639936
outcomeTokenAmounts: 75000000

The same thing happens when receiving: it treats each outcomeTokenAmounts as a sell. If it was
a buy, then -outcomeTokenAmounts[1i] turns it negative.

In its normal state, the code reverts due to an overflow when minting, as we try to mint more




V4
. S 4
Foresight Phage Security & 4

than the max possible tokens. However, given the right market and right conditions, it might
mess up the whole internal accounting and inflate one of the tokens.

POC is in test/PhageSecurity.t.sol - test_01_BuyAndSellSameTX

Recommendation

In general, it's dangerous to have buys and sells in the same transaction. The code below can
be used to confirm that all outcomeTokenAmounts point in the same direction (or are 0):

-

function trade( ... ) {
// Validate that all outcomeTokenAmounts are in the same direction (
// all positive/zero or all negative/zero)
bool hasPositive = false;
bool hasNegative = false;

for (uint i = @; i < outcomeTokenAmounts.length; 1++) {
if (outcomeTokenAmounts[i] > @) {
hasPositive = true;
} else if (outcomeTokenAmounts[i] < @) {
hasNegative = true;

}

// Require that we don't have both positive and negative amounts
require(!(hasPositive &5 hasNegative), "Mixed buy and sell orders
not allowed in single trade");

Low Severity
[L-01] Donation not applied when minting ERC1155 positions

The redeemPositionsForUser function includes a donation fee mechanism meant
to reward the caller (msg.sender). The actual transfer logic is handled by
_handleTransfers. When context.parentCollectionId = bytes32(0), the contract transfers
totalPayout - totalDonationAmount tO the account and totalDonationAmount tO msg.sender, A4S
expected. However, when context.parentCollectionId # bytes32(0), the function mints ERC1155
positions instead of transferring ERC20 tokens — but it incorrectly mints the full totalPayout to
the account, and msg.sender receives nothing. This breaks the donation logic and deprives the
caller of their intended fee.

10



Foresight Phage Security &

&
S 4

function _handleTransfers(
RedeemContext memory context,
address account,
uint totalPayout,
uint totalDonationAmount
) internal {
if (context.parentCollectionId = bytes32(0)) {
require(
context.collateralToken.transfer(account, totalPayout -
totalDonationAmount),
"could not transfer payout to account"
e
require(
context.collateralToken.transfer(msg.sender,
totalDonationAmount),
"could not transfer donation"
e
} else {
“mint(
account,
CTHelpers.getPositionId(context.collateralToken,
context.parentCollectionId),
totalPayout,

); //@audit the donation payment for the “msg.sender’ is skipped
and the account profits it

Recommendation

Update the else block to be something like:

-~

} else {
_mint(
account,
CTHelpers.getPositionId(context.collateralToken,
context.parentCollectionId),
totalPayout - totalDonationAmount,

);

_mint(
msg.sender,
CTHelpers.getPositionId(context.collateralToken,

context.parentCollectionId),
totalDonationAmount,

);
}

1




&
Foresight Phage Security @ 5

[L-02] Using regular approve will break the contracts if USDT is used as collateral

In a few places around the code approve is used. Currently that is not a problem as the main
collateral is planed to be AUSD, however in the future the market may be switched to USDC or
USDT. Due to the contract using approve USDT will not work correctly and will cause some part
of the code to be unusable.

y

if(outcomeTokenNetCost > @) {
collateralToken.safeTransferFrom(msg.sender, address(this), uint(
netCost));

require(collateralToken.approve(address(pmSystem), uint(
outcomeTokenNetCost)));

\ J

Note that in ConditionalTokens regular transfer is also used, which again would not work with
USDT as the transfer can revert, but it will still return true.

s N

require(
collateralToken.transferFrom(
msg.sender,
address(this),
collateralAmount
)

n

)

ould not receive collateral tokens"

Recommendation

Use safeIncreaseAllowance instead of approve and safeTransfer instead of the require transfer
method.




	Disclaimer
	System overview
	Executive summary
	Overview
	Timeline
	Scope
	Issues Found

	Findings
	High Severity
	[H-01] ammMint messes up all collateral backing
	[H-02] Any user can drain the referral contract
	[H-03] Unauthorized redemption in redeemPositionForUser

	Medium Severity
	[M-01] Mixed buy/sell trades can brick the market

	Low Severity
	[L-01] Donation not applied when minting ERC1155 positions
	[L-02] Using regular approve will break the contracts if USDT is used as collateral



