Phage

SECURITY

Bounce Tech

Conducted by:

Pyro, Security Researcher

< Security Review >

Samuraii77, Security Researcher
YanecaB, Junior Security Researcher

31.08.2025

https://github.com/0x3b33
https://github.com/samuraii77
https://github.com/YanecaB

2,

&7
v d
Bounce Tech Phage Security @ 4
Table of Contents
Disclaimer 3
System overview 3
Executive summary 3
OVEIVIEW o 3
Timeline o e 3
SCOPE . . . o 4
[SSUES FOUND 4
Findings 5
High Severity 5
[H-01] Spot and perp balance is not considered for calculating vault value 5
[H-02] Stepwise jumps occur upon spot/perps balance top-ups, allowing MEV
attacks . .. 5
[H-03] Position value is computed incorrectly forshorts 6
[H-04] Unstaking operations are not validated against the creator 6
Medium Severityo 7
[M-01] DoS in prepareRedeem due to fee exceeding contract assets 7
[M-02] Rewards are lost due to rounding in donateFees L. 8
[M-03] First depositor in the locker can claim pastrewards 9
[M-04] Revocation can be bypassed by front-running with Vesting :: transfer 10
[M-05] prepareRedeem does not work asintended 1
[M-06] Fees can grow over total idle assets, causingDoS 12
[M-07] Removed referrers can continue receiving rebates from already-joined users 12
Low Severity 13
[L-01] Minting rounds in favorof theuser 13
[L-02] Minting LeveragedToken is DoSed when there are no stakers 14
[L-03] minSize checkis not fully effective 14
[L-04] Inflation attack is possible in LeveragedToken 15
[L-05] Vesting creation DoS by transferring expired vests 15

y

Bounce Tech Phage Security @

4

-

&
%
=7

Disclaimer

Audits are a time, resource, and expertise-bound effort where trained experts evaluate
smart contracts using a combination of automated and manual techniques to identify as
many vulnerabilities as possible. Audits can reveal the presence of vulnerabilities but cannot
guarantee their absence.

System overview

Bounce is a leveraged token protocol that creates synthetic leveraged exposure to
perpetual futures markets. Users can mint/redeem leveraged tokens (like “ETH 10x Long”) that
automatically maintain target leverage ratios through integration with Hyperliquid's perpetual
trading infrastructure, while earning fees that get distributed to BOUNCE token stakers.

Executive summary

Overview
Project Name Bounce Tech
Repository https://github.com/bounce-tech/bounce-contracts
Commit hash 2761c71112cel3522e169ffc2bd9b0913d69elc
Remediation 2bfeb6138e708146301210629df628ca8e4b5d30
Methods Manual review

Timeline
Audit kick-off 18.08.2025
End of audit 22.08.2025
Remediations start 23.08.2025
Remediations end 31.08.2025

Bounce Tech

&
s 4
Phage Security @ 4

Scope

bounce-contracts/src/Airdrop.sol
bounce-contracts/src/Bounce.sol
bounce-contracts/src/Factory.sol
bounce-contracts/src/GlobalStorage.sol
bounce-contracts/src/HyperRead.sol
bounce-contracts/src/LeveragedToken.sol
bounce-contracts/src/LeveragedTokenProxy.sol
bounce-contracts/src/Locker.sol
bounce-contracts/src/Ownable.sol
bounce-contracts/src/Referrals.sol
bounce-contracts/src/Staker.sol
bounce-contracts/src/Vesting.sol
bounce-contracts/src/utils/ScaledNumber.sol
bounce-contracts/src/constants/Addresses.sol

bounce-contracts/src/constants/Config.sol

Issues Found

Severity Count

High
Medium

Low

&

Bounce Tech Phage Security & 7

Findings
High Severity
[H-01] Spot and perp balance is not considered for calculating vault value

The total value of a vault (LeveragedToken) is computed by the idle assets in the contract and
the value of our perps position on HyperCore.

The flow to get assets into a perps position is:
1. Transfer them out to our spot balance on HyperCore.

2. Transfer to our perps balance from our spot balance.
3. Use the perp balance to create perp positions.

The code does not include the funds in the spot balance which can be staying idle there
waiting for a good trade entry. It also does not consider the perp balance, but only considers
the perp position.

[H-02] Stepwise jumps occur upon spot/perps balance top-ups, allowing MEV attacks

When funds are deposited into the LeveragedToken contract (which is basically a vault), a keeper
will transfer the funds to our spot balance on HyperCore through the below function:

function withdrawBaseAsset(address to_, uint256 amount_) external override
onlyKeepers {
if (to_ = address(0)) revert InvalidAddress();
if (amount_ = @) revert InvalidAmount();
if (amount_ > idleBaseAssetAmount()) revert InsufficientBalance();
_checkpoint();
baseAsset().safeTransfer(to, amount_);
emit WithdrawBaseAsset(msg.sender, to_, amount_);

\

Then, these funds can be added to the perps balance on HyperCore or kept in the spot balance.
However, due to the async design of HyperLiquid, funds disappear from our contract balance
(as they are transferred out), but only appear in our spot balance in the next block. As this is
not considered, the share value will unexpectedly go down each time withdrawBaseAsset() is
called and will go back to normal when funds are in our perps position. This allows users or
MEV bots to enter at the lower share value and exit at the higher one, resulting in profits for
them and loss for the vault/other users.

Recommendation

Implement a credit tracker mapping, so when the keeper transfers out assets to spot balance,
add that amount to a mapping with the current block number as the key. Then, adjust the
total assets of the LeveragedToken contract to add that value.

V4
g
Bounce Tech Phage Security & 4

[H-03] Position value is computed incorrectly for shorts

Each perpetuals position has a size fetched and handles as follows:

s N

int64 szi_ = position_.szi;

if (szi_ < @) szi_ = -szi_;

uint256 unscaledSize_ = uint256(int256(szi_));
data_.size = unscaledSize .scale(sizeDecimals_, 18);

\

A negative size represents a short position. When that is the case, the size is turned to a positive
value. Then, the position value is computed as follows:

s N

function positionvValue(address user_, uint32 perp_) public view override
returns (uint256) {
PositionData memory data_ = positionData(user , perp_);
uint256 notional_ = data_.size.mul(data_.price);
int256 pnl_ = int256(notional_) - int256(data_.initialNotional);
int256 value_ = int256(data_.margin) + pnl_;
if (value_ < @) revert NegativePositionValue();
return uint256(value_);

\

The PnL is computed by subtracting the initial notional from the current notional, where the
notional is size times price. However, for a short, when the price has moved against our short
(has went up), then the notional value will go up and thus increase the PnL - this is incorrect
as price going up on a short should yield losses, not profits.

[H-04] Unstaking operations are not validated against the creator

Unstakes happen in a 2-step process where it is first scheduled to be executed in the future
(after a delay) and can then be executed in the future. However, when unstaking, a user can
provide any ID:

e N

function unstake(uint256 unstakeId) external {
_checkpoint(msg.sender);
uint256 unstakeAmount = unstake(msg.sender, unstakeId , true);
if (unstakeAmount_ = 0) revert NoPendingUnstake();
transferBounce(msg.sender, unstakeAmount);

& J

This allows the following to happen:

1. Bob unstakes his funds and must wait for the delay to pass.
2. The delay passes and Bob is about to complete the unstake.

&
s 4
Bounce Tech Phage Security @ 4

3. Alice wants to unstake but does not want to wait for the delay. She creates an unstake
with the amount of funds that correspond to Bob’s unstake.

4. She immediately executes the unstake, but provides Bob's ID.
As Bob's ID is expired, the unstake will immediately go through and funds will go to Alice.

6. Bob can take Alice’'s unstake after it expires due to the same bug, however another user
can execute the same attack on Alice’s unstake and leave Bob in a state where he is
indefinitely disallowed from receiving his funds.

ol

Recommendation

To fix the issue, consider validating the creator of the stake against the one executing it.
However, also note that the current mechanism for tracking unstakes is significantly less trivial
than it should be for what it is, there are currently too many variables to track - consider
simplifying it, for example instead of having separate structures for unstake positions, unstake
data and the actual unstakes, consider making a simple mapping with an ID as a key and
data o)s the value and then allow users to provide that ID (with validations for the creator of
course).

Medium Severity
[M-01] Dos in prepareRedeem due to fee exceeding contract assets

The prepareRedeem function is designed for cases where the contract does not hold enough
assets to pay out immediately, allowing users to queue their redemption for later execution.
However, the redemptionFee is calculated as baseAmount * redemptionFee * targetlLeverage. Since
the contract only keeps around 10% of the assets in its balance, large redemptions can cause
the computed fee to exceed the contract’s available balance.

In such cases, _payRedemptionFee Will revert, making it impossible for users to even prepare a
redemption because the fee is paid before the tokens are transferred to the contract. This
results in a DoS scenario that defeats the purpose of prepareRedeem.

function _redemptionFee(uint256 baseAmount_) internal view returns (
uint256) {
if (baseAmount = @) return 0;
LeveragedTokenStorage storage $ = getleveragedTokenStorage();
return baseAmount_.mul($.globalStorage.redemptionFee()).mul(
$.targetlLeverage);

&
s 4
Bounce Tech Phage Security @ 4

Recommendation

Consider creating a new variant of _payFeesandBurn() (used specifically when preparing a
redeem) which adds the pre-fee amount as credit without transferring out any fees in the
preparation stage and then process the fee upon the actual redemption execution.

[M-02] Rewards are lost due to rounding in donateFees

When users redeem, they pay the redemption fees with _payRedemptionFee, where part of the
fees are sent to referrals and the other part to the staking contract.

However, in donateFees the math we implement will result in rounding when amounts are small,
which is even further amplified by the fact that our fees are in base token (USDC) which
uses 6 decimals for precision. Inside donateFees we can see how we calculate _integral ->
amount (in 6) * 1e18 / (totalStaked - totalUnstaking) (in 1e18)

-

function donateFees(uint256 amount_) external override {

if (amount_ = @) return;
uint256 div_ = totalStaked - totalUnstaking;
if (div_ = 0) revert ZeroBalance();

baseAsset().safeTransferFrom(msg.sender, address(this), amount_);
integral += amount .div(div_);
emit DonateStakeReward(msg.sender, amount_, div_, _integral);

Example:

1. Redemption fee is 1%

2. User withdraws 5 USDC - 5e6 (the min deposit amount)
3. There are 51k staked bounce inside Staker.sol

4. The math will calculate an increase in integral by o

5e6 * 1% = 5e4 - fee
S5e4 % 1e18 / 51000e18 = 0.98 => 0

5. The fee is still sent to the contract, it's just not reflected as such

Note that the same issue occurs inside Locker too, but it's to a lower degree since the scale
which we use is

18.

Recommendation

Consider keeping the leftover and saving it for the next time.

&
. 4
Bounce Tech Phage Security & 4

uint256 internal _integral;
uint256 internal _unstakeIndex;
uint256 internal _accumulatedDust; // Accumulated precision loss from

+

rounding

/] ...

function donateFees(uint256 amount_) external override {
if (amount_ = @) return;

uint256 div_ = totalStaked - totalUnstaking;

if (div_ = 0) revert ZeroBalance();
baseAsset().safeTransferFrom(msg.sender, address(this), amount_);
integral += amount.div(div_);

// Add any accumulated dust from previous rounds
uint256 totalAmount_ = amount_+ _accumulatedDust;
// Calculate integral increase and track leftover
uint256 integralIncrease_ = totalAmount .div(div_);
uint256 distributed_ = integralIncrease_.mul(div_);
// Store leftover for next round

accumulatedDust = totalAmount - distributed_;
integral += integrallncrease;

+ o+ o+ o+ o+ o+

emit DonateStakeReward(msg.sender, amount , div_, integral);

[M-03] First depositor in the locker can claim past rewards

In the Locker contract, funds are distributed each second to the depositors. The distribution
starts through startDistribution() at the current block timestamp. This means that each lock
(unless in the very same block as the distribution start) will be done after some rewards have
already been distributed.

The issue is that the first depositor unfairly gets the already distributed rewards before his
deposit, because of how the logic behaves. He can do the following:

1. Distribution has started, wait until the first user tries to lock which can be let's say a day
later.

2. When the first user tries to lock, frontrun him by doing the following:

« lock 1 wei.
» claim the rewards.

When that is done, the malicious user will claim all of the already accrued rewards as during
the first deposit, the integral and accounted rewards are not updated.

PoC:

4

e
Bounce Tech Phage Security & 4

function testProfits() public {
locker.startDistribution();

skip(1 days); // 1 day after distribution has started.

address user = makeAddr('user');
_mintTokens(address(bounce), user, 1);

vin.startPrank(user);
bounce.approve(address(locker), 1);
locker.lock(1);

uint256 balBefore = bounce.balanceOf(user);
locker.claim();

uint256 balAfter = bounce.balanceOf(user);

uint256 received = balAfter - balBefore;
assertEq(219780219780219760000000, received);

Recommendation

The simplest fix without changing any actual logic is to implement a minimum lock amount.
This will work good because the first user will be incentivized to deposit to get these initial
rewards for himself, however it will not be in a malicious manner where he simply locks 1 wei
just to steal the rewards.

[M-04] Revocation can be bypassed by front-running with Vesting:: transfer

In the vesting contract, the owner can revoke a user’s vesting by calling revoke() to prevent
them from increasing their claimable tokens. However, a user can front-run the owner’s
transaction and call transfer() to move their vesting to another address not yet listed in
the _claimed mapping. By doing this, the user escapes revocation and continues accruing
claimable tokens, which they can later claim using the new address.

10

)4
Bounce Tech Phage Security & 4

function transfer(address to_) external override {
address from_ = msg.sender;
if (to_ = address(@)) revert InvalidAddress();
if (from_ = to_) revert InvalidAddress();
VestingConstants memory fromConstants_ = _datal[from_];
if (fromConstants_.revokedAt = @) revert VestingRevoked();
if (fromConstants_.start = @) revert NoVesting();
VestingConstants memory toConstants_ = data[to_];
if (toConstants_.start # 0) revert VestingAlreadyExists();

data[to] = VestingConstants({start: fromConstants_.start,
amount: fromConstants_.amount, revokedAt: 0});

delete data[from_];

claimed[to] = _claimed[from_];

delete claimed[from_];

emit TransferVesting(from_, to_, fromConstants_.amount);

Recommendation

Implement a prepareTransfer function that introduces a delay before the actual transfer, similar
to Staker :: prepareUnstake.

[M-05] prepareRedeem does not work as intended

prepareRedeem iS used to schedule redeems when there is insufficient free balance
(_baseAsset().balanceOf(address(this)) - debt) inside the contract.

However, this if inside its internal function (_payFeesAndBurn) prevents us from scheduling more
assets than there are currently free inside the contract.

if (baseAmount_ > idleBaseAssetAmount()) revert InsufficientBalance();

This makes this function operate under the same conditions as redeem, and thus users are
unable to request their assets for redemption if the contract does not have these assets.

Recommendation

The fix for this would require _payFeesAndBurn to have a way to differentiate from which function
it's called (i.e, a variable can be added), where if called from prepareRedeen it would skip this
check:

if (baseAmount_ > idleBaseAssetAmount()) revert InsufficientBalance();

1

4
Ay i

Bounce Tech Phage Security & 7

However, now the debt can exceed the contract balance if users schedule enough at the same
time. This means that idleBaseAssetAmount must be able to handle negative values, as well as
the function that uses it - totalvalue.

[M-06] Fees can grow over total idle assets, causing DoS

Fees are calculated as follows in LeveragedToken:

uint256 annualFee_
uint256 periodFee_

totalAssets().mul(streamingFee).mul($.targetlLeverage);
annualFee .mul(percentOfYear_);

The total assets are all of the vaults owned by the vault, including idle balance and perp
position. The issue is that the fees can currently grow over the total assets if enough time
passes. The likelihood of this happening is not small as the total assets includes funds in the
perp position and the idle balance, while fees are transferred only from the idle balance, so if
there is a 10% pending fee, but only 9% of the total assets are in the vault, then the code would
revert as there are insufficient assets to cover the fees.

Recommendation

To fix the issue, consider capping the fee to be a % of the idle assets, i.e. 100% of the idle assets
(so just cap at idle assets) or to be more favorable to users, let's say 50% of the idle assets.

[M-07] Removed referrers can continue receiving rebates from already-joined users

Removing a referrer via Referrals::removeReferrer deletes their referral code but does not
affect existing users who joined with it. These users’ _referreeReferrers still point to the removed
referrer, allowing them to continue receiving and claiming rebates through donateRebates and
claimRebates. This occurs because donateRebates does not check whether the referrer_ returned
from _referreeReferrersfuser_] is still valid, allowing removed referrers to keep receiving
donations.

Recommendation

Add a check in donateRebates to ensure _referreeReferrers[user_] points to an active referrer.

&
L g
Bounce Tech Phage Security & 7

function donateRebates(address user , uint256 feeAmount_) external override
returns (uint256) {

address referrer_ = referreeReferrers[user_J;
- if (referrer = address(@)) return 0;
+ if (referrer_ = address(@) || bytes(_referrerCodes[referrer_]).length

= Q) return 0;

}

\

And allow users to rejoin with a new referral code only if their current referrer has been removed.

's “

function joinWithReferral(string calldata referralCode_) external override {
if (bytes(referralCode_).length = @) revert InvalidReferralCode();
bool hasJoined_ = _referreeReferrers[msg.sender] #* address(0);
- if (hasJoined_) revert UserAlreadyJoined();
+ if (hasJoined_ &6 bytes(_referrerCodes[referreeReferrers[msg.sender]]).
length > @) revert UserAlreadyJoined();
}

Low Severity
[L-01] Minting rounds in favor of the user

The following function is used to turn assets into shares when minting:

's “

function baseToLtAmount(uint256 baseAmount) public view override returns (
uint256) {
uint256 scaled_ = baseAmount_.scaleFrom(_baseAsset().decimals());
return scaled_.div(exchangeRate());

}

. J

The exchange rate is as follows:

return totalValue().div(totalSupply());

As the exchange rate uses division, it can round down. Then, as the exchange rate is used as
a denominator in baseToLtAmount() and it is potentially rounded down, it will actually round up
the equation there, resulting in the system potentially rounding in favor of the user.

V4
g
Bounce Tech Phage Security & 4

Recommendation

Under normal circumstances, this should not pose issues and a fix, while recommended,
is not completely necessary. If you wish to fix the issue, consider refactoring
scaled_.div(exchangeRate()) to subtract 1if the division is not perfect.

[L-02] Minting LeveragedToken is DoSed when there are no stakers

When a user tries to mint in LeveragedToken, a streaming fee is paid to the staker contract:

-

function _payFees(uint256 baseAmount_) internal {
if (baseAmount = @) return;
LeveragedTokenStorage storage $ = getleveragedTokenStorage();
_baseAsset().safeIncreaseAllowance(address($.globalStorage.staker()),
baseAmount_);
$.globalStorage.staker().donateFees(baseAmount_);
}

\

However, when donatefFees() is called on the staker contract, we revert if there are no active
stakes:

uint256 div_ = totalStaked - totalUnstaking;
if (div_ = 0) revert ZeroBalance();

Recommendation

As depending on the fix, new issues could be introduced, such as stakers receiving fees for
times they weren't staked in, we recommend acknowledging the issue as the likelihood of
there not being a staker is low and if it happened, a trusted entity, like the owner, can stake
some amount himself.

[L-03] minSize check is not fully effective

Upon minting and redeeming, the following check can be seen:

if (baseAmount_ < $.globalStorage.minSize()) revert BelowMinSize();

The user is unable to deposit amount less than minsize. However, he can still:

1. Deposit minSize + X.
2. Redeem shares equal to minSize amount.

14

4
Ay i

Bounce Tech Phage Security & 7

3. End result is x amount of assets deposited, where X can be an amount less than minSize,
effectively bypassing the check.

Recommendation

For the fix of the issue, one is not necessarily needed and the issue can be acknowledged as
there is no significant impact (except for the vault inflation issue which is a separate one).

[L-04] Inflation attack is possible in LeveragedToken

The LeveragedToken contract works like a vault and it is vulnerable to a typical vault inflation
attack, causing a loss for the first depositor:

1. Victim deposits 100e6 tokens.

2. Attacker frontruns, deposits 1e6 + 1 amount of assets (we assume minSize is 1€6). This
mints him 1000001000000000000 shares. This is to bypass the minsize check.

3. Attacker redeems 1000000999999999999 shares which gives him le6 assets. State is 1 share
and 1 asset now.

4. Attacker directly transfers 100e6 tokens to the contract, now assets are 100e6 + 1.
5. The victim’s deposit results in 0 shares minted as 100e18 x 1e18 / (((100e6 + 1) % 1e12) % 1e18 / 1) =
6. Attacker steals his funds by redeeming.

The issue is marked as a Low as there is a slippage protection upon minting, however the
issue can still technically happen if the depositor does not utilize the slippage functionality
and provides 0 as the minimum shares out.

Recommendation

To fix the issue, consider minting some shares as the first depositor upon deployment.
Another issue is the fact that minsize check can be bypassed by depositing and immediately
redeeming.

[L-05] Vesting creation DoS by transferring expired vests

Creating a vest for a user requires that one does not already exist:

if (constants_.start = 0) revert VestingAlreadyExists();

However, users are able to transfer their vests to other users using vVesting:: transfer() in order
to DoS vest creation for the receiver. In the usual case, this would cause a loss of funds for
them as they are losing out on the unvested and unclaimed part of their vest, however there

15

A,
&7
‘)&/’;,%
Bounce Tech Phage Security @ 4

is nothing stopping them from transferring out their claimed and expired vests, resulting in no
loss of funds for them.

Recommendation

To fix the issue, consider implementing a function that allows users to delete their expired vests.

	Disclaimer
	System overview
	Executive summary
	Overview
	Timeline
	Scope
	Issues Found

	Findings
	High Severity
	[H-01] Spot and perp balance is not considered for calculating vault value
	[H-02] Stepwise jumps occur upon spot/perps balance top-ups, allowing MEV attacks
	[H-03] Position value is computed incorrectly for shorts
	[H-04] Unstaking operations are not validated against the creator

	Medium Severity
	[M-01] DoS in prepareRedeem due to fee exceeding contract assets
	[M-02] Rewards are lost due to rounding in donateFees
	[M-03] First depositor in the locker can claim past rewards
	[M-04] Revocation can be bypassed by front-running with Vesting::transfer
	[M-05] prepareRedeem does not work as intended
	[M-06] Fees can grow over total idle assets, causing DoS
	[M-07] Removed referrers can continue receiving rebates from already-joined users

	Low Severity
	[L-01] Minting rounds in favor of the user
	[L-02] Minting LeveragedToken is DoSed when there are no stakers
	[L-03] minSize check is not fully effective
	[L-04] Inflation attack is possible in LeveragedToken
	[L-05] Vesting creation DoS by transferring expired vests

